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Abstract

The spline-based differential quadrature method (SDQM) is applied to the solution of nonlinear initial-value problems.

Explicit expressions of weighting coefficients for approximation of derivatives are presented. Dynamic systems with

Duffing-type nonlinearity are solved to demonstrate the effectiveness of the method. Numerical results of three examples

show that the spline-based differential quadrature method is versatile and stable in the solution of nonlinear initial-value

problems. It can be counted on to achieve satisfactory accuracy for long-term integration.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The application of the differential quadrature method (DQM) to the solution of boundary-value problems
has achieved great success. Comprehensive surveys of the DQM were given by Bert and Malik [1] and Shu [2].
Interestingly, the method was initially proposed for the solution of initial-value problems [3]. However,
inadequate research has been conducted until recent years. One of the major developments of the application
of DQM in the solution of initial-value problems is the ways in which the initial conditions are incorporated
into the solution process. As pointed out by Fung [4], direct application of the conventional DQM results in
unstable time integration scheme. An early attempt was made by Chen who introduced a transformation of
time variable for second-order dynamic systems in which the initial conditions are incorporated simply and
effectively [5]. Using Hermite interpolation to incorporate the initial conditions, Wu and Liu proposed a
general differential quadrature rule [6,7] to solve initial-value problems. An implicit scheme where the time
span is dicretized into a number of large blocks was proposed by Shu et al. [8]. This block marching technique
reduces significantly the accumulation error since the DQM was applied to each block. In a series of papers on
the solution of initial-value problems using the DQM, Fung introduced a modified DQM to incorporate initial
conditions [4,9]. He also discussed at length the stability of various grid patterns in the DQM. It has been
found [4] that among Legendre, Radau, Chebyshev, Chebyshev–Gauss–Lobatto and uniformly spaced grid
patterns, only Legendre, Radau, Chebyshev grid patterns are unconditionally stable using the modified DQM.
In addition, Tomasiello [10] developed an iterative DQM to handle initial-value problems. Despite these
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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developments, there has been limited information on the application of the DGM to long-term integration
especially for nonlinear dynamic problems.

The spline-based differential quadrature is a ramification of the differential quadrature family. Taking the
advantages of spline functions, the spline-based differential quadrature is free of the limitation of grid point
number, which can be a bottleneck for the conventional DQM to achieve long-term integration. So far,
differential quadrature based on quintic and sextic B-spline functions has been successfully applied to the
solution of various boundary-value problems [11,12]. In this paper, a DQM based on cubic B-spline functions
is introduced and used to solve second- and fourth-order initial-value differential equations with Duffing-type
nonlinearity. The spline-based DQM exhibits more flexibility in selection of grid point number due to the local
interpolation nature of splines, which is similar to that of the low-order finite difference method. The stability
of the spline-based DQM is also discussed. Although the proposed spline-based DQM is conditionally stable,
its well-behaved stability still makes it stand out. This is further exhibited in the excellent performance during
the solution of nonlinear Duffing-type problems.

The present paper is organized into the following sections. In Section 2, the cardinal cubic spline
interpolation functions are constructed and the explicit expressions of the weighting coefficients for derivative
approximation are given. The incorporation of initial conditions, the stability of the spline-based DQM and
two ways of application are addressed in Section 3. Three dynamic systems of Duffing-type nonlinearity are
solved in Section 4. Discussion of the results is given in Section 5 and some concluding remarks are given in
Section 6.

2. Differential quadrature based on cubic B-splines

Cubic B-splines are widely used in practice for approximation, because they provide a suitable balance
between flexibility and accuracy [13,14]. In this paper, cubic B-splines are used to construct differential
quadrature format for solution of initial-value problems.

2.1. Cardinal cubic spline interpolation

First of all, a set of uniformly spaced nodes is selected in a normalized interval [0,1], i.e.

x0 ¼ 0; xN ¼ 1; xjþ1 � xj ¼ h; j ¼ 0; 1; 2; . . . ;N � 1;N, (1)

where N+1 is the number of nodes in the interval, h is the length of every segment. The normalized cubic
B-spline function is given by [13,14]

j3ðxÞ ¼
1

6h3

0; xp� 2h;

ðxþ 2hÞ3; �2hpxp� h;

ðxþ 2hÞ3 � 4ðxþ hÞ3; �hpxp0;

ð2h� xÞ3 � 4ðh� xÞ3; 0pxph;

ð2h� xÞ3; hpxp2h;

0; xX2h:

8>>>>>>>>><
>>>>>>>>>:

(2)

Apparently, it is a piecewise polynomial, which covers four consecutive segments only. To construct a
global interpolation function over the interval, usually extra nodes outside the interval ½x0;xN � are needed to
meet the end condition requirements. A typical spline interpolation over the given interval using cubic
B-splines is expressed in the form

s3ðxÞ ¼
XNþ2
j¼�2

FjðxÞyj ; FjðxÞ ¼ F0ðx� jhÞ. (3)

In order to meet the required interpolation condition

s3ðxiÞ ¼ yi, (4)
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the interpolation functions FjðxÞ should satisfy the cardinal condition at every node, i.e.

FjðxiÞ ¼ dij ¼
1; i ¼ j;

0; otherwise;

(

i; j ¼ �2;�1; 0; 1; . . . ;N � 1;N;N þ 1;N þ 2, ð5Þ

where FjðxÞ are usually given in terms of a combination of translated and scaled spline function j3. To acquire
the cardinal spline interpolation function FjðxÞ, the following three auxiliary spline interpolation functions [15]
are constructed first:

c3ðxÞ ¼
XNþ2
j¼�2

yjj3ðx� xjÞ, (6a)

ch1=2i3 ðxÞ ¼
XNþ2
j¼�2

yjj
h1=2i
3 ðx� xjÞ, (6b)

ch1i3 ðxÞ ¼
XNþ2
j¼�2

yjj
h1i
3 ðx� xjÞ, (6c)

where

jh1=2i3 ðxÞ � j3ðxþ h=2Þ þ j3ðx� h=2Þ, (7a)

jh1i3 ðxÞ � j3ðxþ hÞ þ j3ðx� hÞ. (7b)

With the local non-zero property of the spline function j3ðxÞ, all the terms but the one containing yj on the
right sides of Eq. (6) are eliminated. Thus, the cardinal spline interpolation function is obtained as

s3ðxÞ ¼
10
3
c3ðxÞ �

4
3
ch1=2i3 ðxÞ þ 1

6
ch1i3 ðxÞ. (8)

Hence

FjðxÞ ¼
10
3
j3ðx� xjÞ �

4
3
jh1=2i3 ðx� xjÞ þ

1
6
jh1i3 ðx� xjÞ. (9)

It has been shown that the accuracy of the cardinal spline in Eq. (8) is of order Oðh4
Þ [15]. It can be

shown readily that Eq. (4) is satisfied at every node (see Fig. 1). Since the extra nodes outside the interval are
often cumbersome to handle, non-integral nodes within the interval are introduced instead in this paper.
Namely, x1=2 ¼ h=2, x3=2 ¼ 3h=2 and xN�3=2 ¼ ðN � 3=2Þh, xN�1=2 ¼ ðN � 1=2Þh are added in the vicinity of
the two ends of the interval. As a result, the spline-based differential quadrature meets the self-starting
requirement of a good algorithm for initial-value problems [16]. The function values at the non-integral nodes
are given by

y1=2 ¼
XNþ2
i¼�2

Fiðh=2Þyi ¼
1

288
ðy�2 þ y3Þ �

7

96
ðy�1 þ y2Þ þ

41

72
ðy0 þ y1Þ (10a)

and

y3=2 ¼
XNþ2
i¼�2

Fið3h=2Þyi ¼
1

288
ðy�1 þ y4Þ �

7

96
ðy0 þ y3Þ þ

41

72
ðy1 þ y2Þ. (10b)

Then, the function values at the extra nodes are solved for from Eqs. (10a) and (10b)

y�1 ¼ 21ðy0 þ y3Þ � y4 þ 288y3=2 � 164ðy1 þ y2Þ, (11a)

y�2 ¼ 277y0 þ 288y1=2 � 3608y1 þ 6048y3=2 � 3423y2 þ 440y3 � 21y4. (11b)
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Fig. 1. A typical cubic cardinal spline function.
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Similarly, the function values at the extra nodes outside the right end of the interval are expressed as

yNþ1 ¼ 21ðyN�3 þ yN Þ � yN�4 þ 288yN�3=2 � 164ðyN�2 þ yN�1Þ, (12a)

yNþ2 ¼ 277yN þ 288yN�1=2 � 3608yN�1 þ 6048yN�3=2 � 3423yN�2 þ 440yN�3 � 21yN�4. (12b)

Now, the cardinal cubic B-spline interpolation function is re-arranged into the following form which is free
of extra outside nodes

s3ðxÞ ¼
XN

j¼0

OjðxÞyj ; OjðxiÞ ¼ dij ¼
1; i ¼ j;

0; otherwise;

(

i; j ¼ 0; 1=2; 1; 3=2; 2; . . . ;N � 2;N � 3=2;N � 1;N � 1=2;N, ð13Þ

where

O0ðxÞ ¼ 277F�2ðxÞ þ 21F�1ðxÞ þ F0ðxÞ,

O1=2ðxÞ ¼ 288F�2ðxÞ,

O1ðxÞ ¼ � 3608F�2ðxÞ � 164F�1ðxÞ þ F1ðxÞ,

O3=2ðxÞ ¼ 6048F�2ðxÞ þ 288F�1ðxÞ,

O2ðxÞ ¼ � 3423F�2ðxÞ � 164F�1ðxÞ þ F2ðxÞ,

O3ðxÞ ¼ 440F�2ðxÞ þ 21F�1ðxÞ þ F3ðxÞ,

O4ðxÞ ¼ � 21F�2ðxÞ � F�1ðxÞ þ F4ðxÞ, ð14aÞ

OiðxÞ ¼ FiðxÞ for 5pipN � 5 (14b)
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and

ON�4ðxÞ ¼ � 21FNþ2ðxÞ � FNþ1ðxÞ þ FN�4ðxÞ,

ON�3ðxÞ ¼ 440FNþ2ðxÞ þ 21FNþ1ðxÞ þ FN�3ðxÞ,

ON�2ðxÞ ¼ � 3423FNþ2ðxÞ � 164FNþ1ðxÞ þ FN�2ðxÞ,

ON�3=2ðxÞ ¼ 6048FNþ2ðxÞ þ 288FNþ1ðxÞ,

ON�1ðxÞ ¼ � 3608FNþ2ðxÞ � 164FNþ1ðxÞ þ FN�1ðxÞ,

ON�1=2ðxÞ ¼ 288FNþ2ðxÞ,

ONðxÞ ¼ 277FNþ2ðxÞ þ 21FNþ1ðxÞ þ FN ðxÞ. ð14cÞ

It is noted that the selection of non-integral nodes at the vicinity of the two ends is not unique. The selection
of different non-integral nodes at the vicinity of the two ends should meet the criterion that the extra nodes
outside the domain can be expressed in terms of the introduced nodes as well as the inner nodes at the vicinity
of the two ends.

2.2. Weighting coefficients for spline-based differential quadrature

The essence of the differential quadrature is that the derivative of a function with respect to a space variable
at a given point is approximated by a weighted linear summation of the function values at all discrete nodes in
the domain. Therefore, the approximation of a derivative at a node in spline-based differential quadrature is
given by

Dnff ðxÞgi ¼
XN

j¼0

C
ðnÞ
ij f ðxjÞ,

i; j ¼ 0; 1=2; 1; 3=2; 2; . . . ;N � 2;N � 3=2;N � 1;N � 1=2;N, ð15Þ

where Dn is a differential operator of order n, the subscript i indicates the value of Dnff ðxÞg at node xi;C
ðnÞ
ij

are the weighting coefficients related to the function values f ðxjÞ. In the spline-based DQM, it is required that
Eq. (15) be exactly satisfied when function f ðxÞ takes the cardinal spline basis functions OjðxÞ. Consequently,
all weighting coefficients are given in explicit forms

C
ð1Þ
ij ¼ Oð1Þj ðxiÞ; C

ð2Þ
ij ¼ Oð2Þj ðxiÞ,

i; j ¼ 0; 1=2; 1; 3=2; 2; . . . ;N � 2;N � 3=2;N � 1;N � 1=2;N. ð16Þ

It is worth mentioning that the localized nature of splines results in banded weighting coefficient matrices
for derivatives. Meanwhile, the following relationships among weighting coefficients exist

C
ð1Þ
ij ¼ �C

ð1Þ
ðN�iÞðN�jÞ; C

ð2Þ
ij ¼ C

ð2Þ
ðN�iÞðN�jÞ,

i; j ¼ 0; 1=2; 1; 3=2; 2; . . . ;N � 2;N � 3=2;N � 1;N � 1=2;N. ð17Þ

3. Application of SDQM to initial-value problems

3.1. Incorporation of initial conditions

With the first-order weighting coefficients C
ð1Þ
ij , initial conditions are incorporated easily into the spline-

based differential quadrature adopting the same strategy as [9]. For simple representation, the superscript of
the weighting coefficients for the first-order derivatives is omitted. Then, Eq. (15) is written as

s0ðxiÞ ¼ D1ff ðxÞgi ¼
XN

j¼0

Cijf ðxjÞ ¼ Ci0f ðx0Þ þ
XN

j¼1=2

Cijf ðxjÞ. (18)
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Likewise, the second-order derivative of the function is written as

s00ðxiÞ ¼ Ci0 f 0ðx0Þ þ
XN

j¼1=2

CijðCj0 f ðx0Þ þ
XN

k¼1=2

Cjk f ðxkÞÞ

¼ Ci0 f 0ðx0Þ þ
XN

j¼1=2

CijCj0 f ðx0Þ þ
XN

j¼1=2

Cij

XN

k¼1=2

Cjk f ðxkÞ. ð19Þ

Obviously, the two initial conditions f ðx0Þ and f 0ðx0Þ are imposed.
Eqs. (18) and (19) can be rewritten in the matrix forms as follows:

_y1=2

..

.

_yN

8>><
>>:

9>>=
>>; ¼ fC0gy0 þ ½C�

y1=2

..

.

yN

8>><
>>:

9>>=
>>;, (20)

€y1=2

..

.

€yN

8>><
>>:

9>>=
>>; ¼ fC0g _y0 þ ½C�fC0gy0 þ ½C�½C�

y1=2

..

.

yN

8>><
>>:

9>>=
>>;, (21)

where fC0g denotes fCi0g vector, ½C� denotes matrix ½Cij� which is of size ðN þ 4Þ � ðN þ 4Þ. In the same
manner, high-order derivatives are given as

y
ðmÞ

1=2

..

.

y
ðmÞ
N

8>>><
>>>:

9>>>=
>>>;
¼
Xm�1
p¼0

½C�m�p�1fC0gy
ðpÞ
0 þ ½C�

m

y1=2

..

.

yN

8>><
>>:

9>>=
>>;; mX1. (22)

The above way to incorporate the initial conditions is simple and straightforward. In addition, the recursive
formula in Eq. (22) implies that low-order spline interpolation functions are applicable to the solution of high-
order differential equations. This will be demonstrated later in an example.

3.2. Two ways of application

Since the spline-based differential quadrature is constructed on the normalized interval [0,1] and the method
is virtually devoid of limitation on the grid point numbers. There are two practical means of applying the
method to the solution of initial-value problems.

3.2.1. Indirect approach

This approach is conventional since most time integration methods adopt the similar procedures. It is
characterized by the division of the entire time domain into several subintervals. The spline-based differential
quadrature is applied to each subinterval. The end state conditions for each subinterval are used as the initial
conditions for the next subinterval. The process is repeated until the solution at the end of the interval is
obtained.

3.2.2. Direct approach

It has been rare to evaluate the state variables at a time directly unless it is close to the initial time. The
development of spline-based differential quadrature, however, has made this achievable. This is attributed to
the local behavior of the spline functions. Suppose that t represents the normalized time domain [0,1], which is
required by the spline-based differential quadrature; t represents the actual time variable, which is given as

t ¼ Lt; t 2 ½0; 1�, (23)
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where L represents the length of actual time domain. Before the implementation of differential quadrature
analog, all time derivatives are transformed onto the normalized time domain

dðnÞy

dtðnÞ
¼

1

LðnÞ
dðnÞy

dtðnÞ
; n ¼ 1; 2 . . . . (24)

3.3. Stability of spline-based differential quadrature

The stability of an algorithm is of critical concern in the solution of initial-value problems. Thus, an
undamped linear single degree-of-freedom system is considered to investigate the stability of the present
spline-based DQM. The dynamic equation is given as

€yðtÞ þ o2yðtÞ ¼ 0 (25)

with initial conditions

yðt ¼ 0Þ ¼ y0 and _yðt ¼ 0Þ ¼ v0. (26)

The stability is evaluated by calculating the spectral radius of the numerical amplification matrix [Z], which
relates the state at the end of the temporal interval to the initial state, i.e.

yjðt ¼ endÞ

_yjðt ¼ endÞ

( )
¼ ½Z�

y0

v0

( )
. (27)

The algorithm is said to be stable if the spectral radius jljmaxp1 or unstable if otherwise.
Fig. 2 shows the spectral radii for spline-based differential quadrature with N ¼ 8, 10 and 20. Clearly, there

is no bifurcation or bubble in the curve because the eigenvalues of the amplification matrix are a complex
conjugate pair. It is seen that the spline-based differential quadrature is conditionally stable. The unstable
computational time interval falls within ½0:2; 1:3�ot. With the increase of number of nodes, however, the
unstable interval of the spectral radii remains virtually unaltered and even becomes narrower. As reported by
Fung in his comprehensive research about the stability of the conventional DQM [4], the stable time domain
varies with the increase of grid point number. Even for the differential quadrature with Legendre, Radau,
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Fig. 2. Spectral radius of amplification matrix for N ¼ 8, 10 and 20.
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Chebyshev grid patterns, A-stability is not guaranteed if the grid number is large. In contrast, the stability
criterion for spline-based differential quadrature is virtually invariant against the number of grid points.
Furthermore, there does not exist limitation on the number of grid points in spline-based differential
quadrature. This salient advantage makes it possible to achieve long-term integration with satisfactory
accuracy regardless of the stability of the method. An example will be given later in which up to 800 nodes are
used to acquire solution of the long-term solution of a dynamic system.
4. Duffing-type nonlinear equation

The form of Duffing-type nonlinear differential equation is written as

yð2Þ þ yþ ey3 ¼ F sin ot, (28)

where F and e are given parameters, o is also a given constant which represents the enforcing frequency. The
analytical solution is given approximately by means of a trigonometric series [17]

y ¼ a1 sin otþ a3 sin 3otþ a5 sin 5otþ . . . . (29)

Three examples of Duffing-type nonlinear equation are calculated to illustrate the spline-based DQM.

Example 1. A second-order differential equation which represents the free vibration of pendulum is studied.
The frequency of the oscillations depends on the initial displacement of the pendulum. Given parameters
e ¼ �1=6, o ¼ 0:7 and F ¼ 0 in Eq. (28) for the unforced Duffing system, the solution [17] is

yffi 2:058 sin 0:7tþ 0:0816 sin 2:1tþ 0:00337 sin 3:5t (30)

for initial conditions

y ¼ 0; yð1Þ ¼ 1:62376. (31)

Example 2. Given parameters F ¼ 2, e ¼ �1=6, and o ¼ 1 for the forced Duffing equation, the solution [17] is

yffi �2:5425 sin t� 0:07139 sin 3t� 0:00219 sin 5t (32)

for initial conditions

y ¼ 0; yð1Þ ¼ �2:7676. (33)

Example 3. The following high-order (fourth-order) nonlinear differential equation is studied

yð4Þ þ 5yð2Þ þ 4y� 1
6

y3 ¼ 0. (34)

Its analytical solution [17] for o ¼ 0:9 is given as

yffi 2:1906 sin 0:9t� 0:02247 sin 2:7tþ 0:000045 sin 4:5t (35)

for initial conditions

y ¼ 0; yð1Þ ¼ 1:91103; yð2Þ ¼ 0; yð3Þ ¼ �1:15874. (36)

The computational time domain is chosen as [0,100] for the three examples unless otherwise stated. The
selection of long time domain is to investigate the stability and reliability of the method. As mentioned above,
the accuracy of the conventional DQM decreases with the increase of domain length. For the above three
examples, acceptable solutions over only a few cycles were obtained using the conventional DQM. In the
forced Duffing equation case, convergent results were only obtainable for time domain shorter than one half
cycle [7].
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5. Numerical results and discussion

During the solution of dynamic systems of Duffing-type nonlinearity, the resultant nonlinear algebraic
equations are solved using modified Powell hybrid algorithm [18]. To demonstrate the stability of the spline-
based DQM, the indirect approach is adopted in the solution of unforced Duffing system with e ¼ �1=6,
o ¼ 0:7 and F ¼ 0. The solution over 100 s (approximately 11 cycles) is sought and the time domain is divided
into 100 subintervals. N ¼ 8 is chosen for each subinterval. The results of displacement, velocity and
acceleration, which are displayed in Fig. 3, are in excellent agreement with the analytical solution. With the
indirect approach, solution with the same order of accuracy as shown in Fig. 3 over much longer time domain,
say over 30 cycles, is also obtainable. When more subintervals are used in the indirect approach, larger
accumulated errors result eventually. There is a tradeoff between the number of subintervals over the time
domain and the number of points N. When fewer intervals are used in the indirect approach and the
accumulation error is insignificant, the accuracy of the results is virtually the same as that of the direct
approach. In the extreme case, i.e. the direct approach, large N is usually needed to gain satisfactory accuracy.
The results with the same accuracy as shown in Fig. 3 are obtained using the direct approach when N is
increased to 400. When more intervals are used in the indirect approach and the accumulation error becomes
pronounced, the result accuracy differs for the two approaches. For clarity of presentation, only the results
over the last few cycles are given in Figs. 3–5.

The forced dynamic system in Eq. (28) with F ¼ 2, e ¼ �1=6, and o ¼ 1 is dealt with using the indirect
approach first. As reported in [7], this problem poses challenge to the conventional DQM since only one-half-
cycle solutions of satisfactory accuracy were obtainable. It is found that results of satisfactory accuracy are
obtained only for rather short time domain, say, t 2 ½0; 10�. To acquire the solution with good accuracy over
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Fig. 3. Solution of Duffing equation of Example 1.
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Fig. 4. Solution of Duffing equation of Example 2.
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long time domain t 2 ½0; 100�, the direct approach and sufficient grid points are needed. When N is increased to
600, the results are in very good agreement with the analytical solution. The solutions of y; yð1Þ; yð2Þ over
t 2 ½0; 100� (about 16 cycles) for N ¼ 800 are shown in Fig. 4. It is noteworthy that difficulty in choosing a
proper initial solution vector may arise when very large N is used in the direct approach. But this is
compensated by the removal of possible accumulation error and stability concern.

To further demonstrate the spline-based DQM, the high-order system given in Eq. (34) is tackled. The
solution over 100 s (approximately 14 cycles) is sought and the time domain is divided into 10 subintervals.
The indirect approach is adopted and N ¼ 70 is chosen in each subinterval. Very good agreement with the
available analytical solution is reached, as shown in Fig. 5. This confirms the assertion that low-order spline
functions can be used to solve high-order differential equations. Actually, solution with reasonable accuracy is
obtainable when N takes 40. In addition, further reduction of the number of subintervals results in the need of
large N and accordingly the requirement of good initial solution in the iterative process.

6. Concluding remarks

Based on the construction of cubic cardinal spline functions, a differential quadrature method (DQM) has
been developed and applied to the solution of dynamic systems governed by Duffing-type nonlinear
differential equations. Two solution approaches have been presented and their effectiveness has been verified.
The stability of the spline-based DQM has also been studied. Although it is conditionally stable, the virtually
invariant stable criterion with respect to the number of grid points makes it stand out as a promising
numerical tool in the solution of initial-value problems. In addition, low-order spline functions are applicable
to the solution of high-order differential equations. In particular, the proposed direct approach is attractive
when long-term integration is encountered in the analysis of dynamic systems.
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